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DETECTION OF SIGNALS IN NON-GAUSSIAN CORRELATED 
NOISE DERIVED FROM CAUCHY PROCESSES 

INTRODUCTION 

The detection of additive signals in correlated noise or radar clutter is a problem that is of 
interest and has been extensively studied. The optimal detector when the correlated noise is 
Gaussian-distributed is the Wiener filter, or matched filter, after prewhitening followed by a thresh- 
old. This detector can be obtained by using the Neyman-Pearson procedure that maximizes the prob- 
ability of detection for a given probability of false alarm for a binary hypothesis. In applying this 
procedure to non-Gaussian, correlated noise, three problems are encountered. First, we seldom know 
or can easily measure the required multivariate probability density of the noise; second, often there 
are unknown parameters that must be accounted for in some way; and third, the likelihood ratio 
obtained in the test sometimes is difficult to simplify. All three of these problems are addressed in 
this study for a given situation to be described. 

The most difficult problem encountered is obtaining the multivariate probability density of the 
noise. A procedure for constructing an approximate representation of the multivariate probability 
density is described by Martinez, Swaszek, and Thomas [1]. The procedure constructs the desired 
multivariate density from one that can be analytically represented, such as a Gaussian one, by using a 
nonlinear transform to map the one into the other. The mapping is adjusted so that the marginal dis- 
tributions and the first two moments of the constructed multivariate distributions are correct. Often 
these are the only properties of the clutter that can be measured easily. In Ref. 2, these results are 
extended to include complex numbers to represent radar baseband signals, to provide a suitable 
transformation, and to give the closed-form, multivariate probability density for both correlated 
Weibull and log-normal clutter that is correct in the marginals and covariance matrices. The purpose 
of this report is to repeat the procedure outlined for Ref. 2 except using an underlying Cauchy pro- 
cess rather than an underlying Gaussian process. The examples in Ref. 2 use a bivariate distribution, 
and consequently that is what is developed here. The two processes are identical in the marginals and 
the first two moments but differ in other respects. 

Once the bivariate distributions are known, the optimal detector for additive signal can be found 
in closed form by using the Neyman-Pearson test. In Ref. 2, an approximation to the Neyman- 
Pearson test was found that simplified the test and removed the need for knowing the signal amplitude 
and phase. This detector was shown to perform better than the classical matched filter after pre- 
whitening, which is optimal only for Gaussian noise. 

We describe a means of generating correlated Cauchy distributed samples, then develop an 
expression for the bivariate density function for the Cauchy process. This is followed by the develop- 
ment of the Weibull and log-normal bivariate probability densities. The Neyman-Pearson test is con- 
structed and simplified, and an example is given. Further work will involve comparing detection 
results of the detectors described in Ref. 2, and those developed here by using each other's noise 
models. 

Manuscript approved August 8, 1987. 



BEN CANTRELL 

CONSTRUCTING THE BIVARIATE CAUCHY PROCESS 

Given that one can easily construct independent Gaussian random variables, Cauchy variables 
can be constructed from them through a nonlinear transformation 

z'AD = h-\zUl)) 

and 

z'M) =h-\zUl)), 

where Zcil), z'dl), Zgil), and Zg(l) are the inphase and the quadrature components for the Cauchy and 
Gaussian random variables respectively, /i^H) is the nonlinear function, and / indicates the /th sam- 
ple.   The inverse transformation/i (•) is defined by 

z:(l) = h(z^{l)) 

and 

Z'gd) =h{z'c{l)). 

The nonlinear functions are specified by the requirement that the distribution functions over each vari- 
able must be equal and are 

j_       P, (Zg{l))dzgil) ^ \_   P,^(zAl))dZc(l) 
-00 « 

and 

11 Pz(z,(l))dzgil) = f_      P,SZcil))dzAl). 

The Gaussian density is 

P^ izM)) zy^g 

and the Cauchy density is 

Pz fe(0) 

where a^,   is the standard deviation of the Gaussian noise and b is the Cauchy parameter.   After 

integration the nonlinear function is 

h-'iZg'iD) =&tan j  f-f erfc 
^z:{l) ^ 

h (z;il)) = Vzerfc-' i 1 - — tan"^ 
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where the complementary error functions are defined as 

erfc(x) = -r-f    e'' dt 

and the dot represents the in phase r and quadrature / components. The integrations are classic ones 
in that the integration over the Gaussian density yields an error function and over the Cauchy yields 
an inverse tangent function. 

The next step is to correlate the data. Since the sum of Cauchy processes is still Cauchy (shown 
subsequently), the data are correlated by using some of the same samples in sums for each of the new 
random variables. Furthermore, the results are to be obtained for both the independent inphase and 
quadrature channels.   The following sum operations over K variables accomplish these goals: 

1 /f + i 

^  /=2 

A = i^E^cCO.and 

1    K + 1 

^   / =2 

The marginal probability densities of each of these new random variables x\, X2, x\, md x'j are a\\ 
identical and are Cauchy, given by the density function 

p.:(^:) 

irb il + 
xj_ 

b 

The bivariate density 

^^.^,.■,4   {X\,X'2,X\,X\)   =   P^r^^r   {X[,X^2)P,-,,',   W,4) 

is derived in the next section. The first samples Xj and x\ can be made highly correlated to the 
second set of samples Xj and x^ if K is large. Note that the moments are not defined for the Cauchy 
process. 

BIVARIATE CAUCHY PROBABILITY DENSITY 

The bivariate Cauchy probability density is found by using characteristic functions.   Because 
P r   r (xi, XT) and P^i ^i  (xj, X2) are identical in form, only the one for the inphase component is 

developed.   The characteristic function of P^r ^r  (xi,X2) is first found, then P^r^r  (xi,X2) is 

found by using the inverse Fourier transform of it. 

i 
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The characteristic function C^r^r O'wi, jwi) of P^r ^r (x\, J:^ is defined by 

C.;,.^0-H'„>,)=£[.^""^'"^-^^^ j 

where E is the expected value with respect to J:I and Xj ■   Substituting for x[ and X2, the characteris- 
tic function becomes 

K + ] 

^x\,xt, Uwi,jW2) = E   le 
j-ir  E  ^1(1)    J-^   E  Zed) 

where now the expected value is over z^CO for / =1, K + \.   This expression can then be writ- 
ten as 

Q,.; (J^lJ^l) = C;, Zed) 

>1 >2 /f 

K ^z'AK + 1) /i: ,'l^'^z^S) K 

by noting that all the z^CO's are independent and that each of the (^ + 1) terms are by definition a 
characteristic function. The characteristic functions C^TQ-^ () are characteristic functions of Cauchy 

processes and are 

^z'S) = exp 
Wi I b 

~K 

^Z^{K + 1) 

Wo 

K 
exp 

H'2 I ft 

^z;(/) 

j(Wl+W2) 
= exp ^ -- 

Wj + W2 I ^ 

K 

The desired characteristic function then is 

^x\,xiUwi,jW2) = exp j - —(|wi| + IW2I +iK -l)\wi + W2\) 

The bivariate probability density is obtained by taking the inverse Fourier transform of the 
characteristic function and is defined by 

\^Tr)    — 00 — 00 I I 
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The integration is performed in parts over different regions because of the absolute value signs in the 
characteristic function.   The regions are defined by the boundaries 

/Q : Wj > 0,    W2 > 0 /'I:H'I<0,    W2 > 0,     |H'I|>|H'2 1 

/'o : wi <0,    Wj < 0 /2 : w 1 > 0,    ^2 < 0,     I w 11 < I vi'2 

/i : Wi > 0,    IV2 < 0,     I Wi I > I W2I /'2 : Wj < 0,    W2 > 0,     I wi I < I ^21 

and IQ, /'O, /i, /'i, I2 ^"d I'j are the values of the integrals over those regions. Consequently 

^.^4  (-^I'^l)  =/o + /'o + /l+/'l+/2 + /'2- 

The integrations are sketched out in Appendix A.   The result is 

^x'i.x'. ^^i' ^2) - 
(lirYb 2u2 

r - ^ ->, r ~> 
x\ A 

1 — 

_     L^ J Vb   J 

\~ 
1 + 

[   b 

2  ■ 

1 + 
x\ 

h 

~>, 2 - 

(1-p.) 

r       "A 
A:; ^\ 

(l-p.)' + 1 + 
x\ 

(1-p.) h 

(i-p.r + 1 + 
6 

+ 

r       ~\ 

Px(^-Px)- 
X2 X\ x\ 

h       h 

(1 - PxT + Px + b       b 

+ 
Pxi^ - Px)- 

V.        ^ 
b 

x\ 

x\ 

^b  , 
(1 - PxT + 

where p^ = 2/K.   A small 8x indicates a large correlation. 

Px + b 

X2 
(1) 
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The density P^; ^^ (x\, x'2) is identical to P^. _^. (x^, x^) except superscript r is replaced with /. 

The density was checked to see if a simple Cauchy was obtained after numerical integration over one 
of the variables. This was obtained for a number of cases. This fact is also sufficient to guarantee 
that the area under the density is one. These numerical integrations served as checks to the 
mathematics. 

BIVARIATE WEIBULL AND LOG-NORMAL PROBABILITY DENSITIES 

Two noise distributions of interest are specified by the Weibull or log-normal marginal distribu- 
tions on the magnitude of the signal. To map the bivariate Cauchy variables just derived to these dis- 
tributions on the marginals, the distribution of the magnitudes of the random variables given by 

must first be found.   Then the nonlinear mapping must be specified. 

The distribution of the magnitude and phase of the Cauchy random variables is given by 

where y^ is the Jacobian transformations.   Given 

^k   ~   \Xk\   ''OS ^k 

and 

4 =  \xk\ sin dk , 

J.   = 
^\Xk\ 

ddt 

dxl 

d\xk 

dd. 

\Xk 

Px^(4) 

Ttb 1-h 
Xk_ 

b 

then 

Px'^k) 

irb 1 + 
Xk 

~b 

UA i\Xk\,6k)  = 
\Xk\ 

r 

1 

■K'b^     J \Xk 1 
2 

\Xk 1 
1 + 

b 
- -H 

^b 
L -^ ^ v_                y 

sin^ lOk 
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Integrating over 6, from -T to TT yields 

P\x,\(\Xk\) 
^\Xk 

IT 

i\x,\^ + 2b^) v: r ~\ 

+ \Xk 

where the integral 

dx 
 tan  ' V^ + b 

tanx 
a + b sin^J:        ^a(a + b) 

found on page 152 in Ref. 3 is used. 

The mapping used to map the bivariate Cauchy into a bivariate Weibull is 

and the inverses are 

ll'" 
8~\Uk 

'^■^ yk 
\Xk\ 

Xk 

v' 
g'Wxk I'.' Vk 

\xk\ 
Xk 

si\yk\) 4 
\yk\ 

gi\yk\) 

y'k 

4 
\yk\ 

y'k 

(2) 

(3) 

for ^ = 1 and k = 2.   The nonlinear functions are specified from the requirement that the distribu- 
tion function on \yi^\ and \xi^\ must be equal.   This requires 

f^^'^^'^^ ,     ,     ,     ,       fl^'l ,     ,      , 
Jo Pw\i\xk\(d\x^\  = \^     P\y,\i\yk\)d\yk\ 

and 

M\ ,     ,      , 
Jo      P\x,\i\xk\)d\xk 

The Weibull distribution is given by 

io P\yAi\yk\)d\yk 

r .       .   ~^ 

P\yAi\yk\) =aln2 
m 
M„ 

a-l 

exp In 2 
Uk 

^My 
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where My is the median value and a is the Weibull parameter that ranges from ~ .5 to 2 for radar 
clutter.   For a = 2, the Weibull reduces to the Rayleigh distribution.   The lognormal is given by 

^I.J(I>'^I) 
2T<^/ \yk 

exp 

f^ ^ 
r       r ,    , ^        ' 2 

1 \yk \ <     '/In - > 
lot ^My ^ 

>* _^ 

where My is the median value and a/ is the standard deviation of (In | y^ | )^.   By performing the 
integrals over the defined marginal densities, the nonlinear functions are found to be 

'i\yk\) = b V tan 
TT TT 

exp <. — In 2 
\yk 
M„ 

^     ■'    ^ 

-1 

g-\\X,\)=My 

for the Weibull distribution and 

In < 
l--tan-' 

TT 

V|xj2+/,2 

In 2 

l/a 

5 i\yk\) = b\ tan — erfc 
8 

V2 
/^    ■ .      ^ 

In 
\^k 

M„ 
-1 

'(|jc;. I) = M   exp —r- erfc   ' 4 
V2 

l--tan-i 
TT 

^ 2   ,1,2 ^J'+^ 

for the lognormal.   The function erfc is the complimentary error function, erfc   ' is its inverse, and In 
is the natural logarithm.   Appendix B provides the details for finding these functions. 

Finally the new bivariate Weibull or bivariate lognormal density can be specified in terms of the 
bivariate Cauchy by 

Pr,,yi,y\,y',(yi'y'l'y2,y2)  =P.r,.riA,X2)P,i,,4iA,x'2)Jy(y\,y[,y'2,y'2) g(|yil) 

xl =    gibk I)   y'k 
\yA 

(4) 
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Jy(y\,y\,y2,y2) = 

J, 

j,j \->i 

bxl        dxL 

9y[        dy[ 

dx[        dxl 

8(\yk\)g'i\yk\) 

\yk\ 

(5) 

(6) 

dy'k dyl 

where g'(-) is the derivature of g(-) with respect to \yk\ ■   The Jacobian for the Weibull is 

-2 

J,   = 
\yk 

M„ 
\l/tan IT 

-^ 

where 

sec 
IT 

-^ 

and for lognormal 

TT 
"A = ^ exp ln2 \yk\/My 

exp 
V2 

In 
\yk 

M„ 

where t/- for this case is 

IT 
\1/ = — erfc 

8 
V2 

In 
\yk 

M„ 

tan i/- sec i/' 

The bivariate Weibull distribution was checked by numerical integration. The signals were con- 
verted to magnitude and phase through another transform and then integrated over the two phases and 
one magnitude. The remaining marginal density was Weibull as desired; consequently the integration 
over all variables is one. 

NEYMAN-PEARSON TEST 

The classical radar solution for optimally detecting a signal in additive noise is the Neyman- 
Pearson procedure for a binary hypothesis test. This processor maximizes the probability of detection 
given a fixed false alarm rate.   The processor is specified by the likelihood ratio and in this case is 

\p — 
y\^yi^yuy2 

y,i^\ -s\), (y\ -s\), (y^ -.5), {y\ -4)) 

P„r 
>'l.3'2.>'l->'2 

9 

(yi'>'i>>'2>>'2) 
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where 

5cos(<^j), 

s\  = 5sin(<j!)j), 

Sj = S cos (0^ + A) ,and 

s'2 = Ssinicj), + A). 

Here, S and 6^ are the signal's unknown amplitude and phase, and A is the phase rotation of the sig 
nal between samples 1 and 2.   The signal-to-noise ratio is defined to be 

(S/N) = S^/2a^ , 

where 

a^ = VAR(y[) = VARiyl) 

and VAR(-) is the variance. A very lengthy closed form expression for the likelihood ratio can be 
written by combining Eqs. (2) through (6). However, the test is very difficult to implement and con- 
tains unknown parameters.   Consequently an approximation to this processor is next considered. 

APPROXIMATE NEYMAN-PEARSON TEST 

The noise is assumed to be heavily correlated (p^ very small), and the signal is assumed to be 
small with respect to the noise. Equations (2) and (3) under signal condition can be approximated 
from Ref. 2 as 

8(\yk\) r 
Xk  ~  —\ ^Jk -CSk 

\yk\ 

xl = gibk I) 
\yk 

-Jk - CSk 

By using this approximation, the likelihood ratio becomes 

PxU^M\^^2)PAAiA,x\)Jyiy\y\,---) 
X]X2 

^Np   — 

A 
g(|yil) 

bil 

Px^,,.r^(^'i'^2)P,-,4ix\,x'2)Jy(y\,y\,---) 

x\ 
s{\y\\) , 

10 
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Assuming that the Jacobians cancel and that x\,X2, x\, and Xj are the transformed samples, the 
likelihood function is 

\p ~ 

[{x\ -cs\), (x5 -csDlP^. ^[(x'l -cs\), {x\,-cs'2)'\ 

The expressions for P^r ^r {x\, X2) and P^i ^, {x\, X2) are simplified by noting that the factor 

2 

Px + 
X^ X2 

~b       V 

in the denominator of Eq. (1) that defines P^r ^r {x\, X2) basically controls the central peak of the 

probability density, since p^ is small and x\  ~ X2 under high correlation conditions.   Consequently, 

r     „r \   ~^ 
^x\,x'--,  (-^1' -^2) 

7 
r ^ 2   ' 

Pi + 
x\ X'7. 

h h V ■    j 

and 

^x\ x'2 '^•^1' ^2) 
7 

P/ + 
x\ X2 

2  ' 

Next, \a is defined by 

where 

\p ~ \ ~ W' 

r\2 b'p^ + ix\ -^5) 

and 

b'p^ + [{x\ - cs\) - {xi ~ cs[)Y 

i x2 

X'  = 
bp^ + {x\ -x'2) 

i M2 b'p^ + [{x\ -cs\)-{x'2 -cs'2)] 

These can be approximated by 

Then 

X^^ = l+2c{s\ -s'2)(xi -x'2), 

K = l+2cis\ -s[){x\ -x\). 

K = (*i -4)(A -4) + (^i -4)(-^i -^2) 

11 
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where the higher order term has been ignored and the other coefficients have been incorporated into 
\a ■ This expression states that the data are transformed back to the bivariate Cauchy random variable 
and then the correlation between samples is removed by subtraction. This seems reasonable since it 
was in the Cauchy domain that the data were correlated. Consequently, the correlation probably 
should be removed in this domain. However the Cauchy domain is not an easy one in which to set 
the thresholds because of the large tails on the distribution. Since the Cauchy random variables were 
generated from Gaussian ones, the subtracted random variables are transformed to Gaussian by h. 
The detector finally used is then given by 

K =^[hix\ -x$)]2 + [(/i(x'i -x'2)f. 

The detector transforms the measurements from bivariate Weibull or lognormal to bivariate Cauchy, 
removes the correlation by subtraction in both the r and the i components, transforms the remaining 
Cauchy to Gaussian, and computes the energy in both r and / signal components. This is intuitively 
satisfying in the sense that the processor inverts the way the data are generated. 

SIMULATION PERFORMANCE OF AN EXAMPLE 

The performance of the detector is evaluated by using data samples obtained from the con- 
structed multivariate density of the clutter. The performance curves are defined as the probability-of- 
detection vs signal-to-noise ratio given a fixed probability of false alarm for various problem condi- 
tions. The performance of the approximate Neyman-Pearson test is compared to that of the matched 
filter defined by 

V iS'Ry-'Yl 

where the traditional complex notation has been used to represent the data vector 

yi + jyi 

where j — ^-I.  The covariance matrix is 

Ry    =    (fy 
Pv     1 

where py is the correlation coefficient of the Weibull noise that has an even spectrum, and the signal 
vector is 

s\   +  Pi 
j 

1 s\   +  jsh 

The bar represents the conjugate, t represents the transpose, 
represents the absolute value. 

1 represents the inverse, and 

For this example N =2,N = AO,b = 1, My = 1, a^. = 1, <^, is arbitrary, and the steering 

vector is s\ = 1/^, ^'i = 0, ^2 = 0, and s\ = 1/^. For Weibull clutter of parameter 7=1, 
1.5, and 2, it was found by simulation that Oy = 1.42, .97, and .84, respectively, and that Py = .972 
for all three values. 

12 
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The data used in the simulation are generated by converting independent Gaussian distributed 
samples to Cauchy distributed samples, correlating them through a summer, and then converting them 
to Weibull distributed samples on the marginals. This data generation is used to set the thresholds 
through the probability of false alarm. Signals are then added with random phase to the bivariate 
Weibull distributed samples to obtain the data required for generating the operating characteristics of 
the detectors. 

The probability of false alarm pj^ vs threshold is computed by using Monte Carlo simulation 
techniques. Random samples of noise y\, y2, y\, y^ are generated. A normalized histogram of the 
number of samples having values in a small interval for each detector is found. After many trials, a 
curve of the probability density of the output of each detector vs X„, or \^f is obtained. The 
probability of false alarm is defined as the sum of all values of the density from X*„ or X*^y to infin- 
ity. For small values of the probability of false alarm, an importance sampling technique is used. 
This procedure distorts the generation of random samples so that more false alarms occur than should 
and then compensates for this in the weightings used to generate the histogram. This technique is 
outlined in Appendix C. The threshold settings vs probability of false alarm for the new approximate 
detector and the matched filter are shown in Table 1 for a = 1, 1.5, and 2.0 and for probability of 
false alarms as low as 10"^. The reason the thresholds for the approximate detector are independent 
of a is that the detector maps the Weibull distributed measurements to an identical Cauchy distribu- 
tion regardless of what a. is. Although the thresholds are independent of a, this does not mean that 
the detector performance is independent of a. 

The performances of the detectors are compared by observing the probability of detection vs 
signal-to-noise ratio for a fixed probability of false alarm. The probability of detection is computed 
by using a Monte Carlo simulation. The fraction of time the detector output exceeds the threshold for 
a set of randomly generated samples is computed.   This number is the probability of detection. 

Performace results are shown in Figs. 1 to 3 for Weibull parameters of a = 1.0, 1.5, and 2.0, 
respectively. In all cases, the probability of false alarm is 10~^. Figures 1 to 3 show that the 
approximate detector performs better than the matched filter. In all cases, the new approximate 
detector performs better than the matched filter; that is optimum for stationary Gaussian bivariate dis- 
tributions. This is true even when a = 2 and the marginal densities become Gaussianly distributed. 
Even though the marginals are Gaussian, the data are not bivariate Gaussian and consequently the 
new detector is better.   A functional flow of the detector is shown in Fig. 4. 

Table 1 — Probability of False Alarm vs Thresholds for Weibull Clutter 

Pfa 

a 10-1 10-2 10-3 10-^ 10-^ 10-^ 10-^ 

Approximate filter 1.0 
1.5 
2.0 

.51 

.51 

.51 

1.65 
1.65 
1.65 

2.52 
2.52 
2.52 

3.30 
3.30 
3.30 

3.85 
3.85 
3.85 

4.15 
4.15 
4.15 

4.35 
4.35 
4.35 

Matched filter 1.0 
1.5 
2.0 

5.0 
9.0 
9.0 

30. 
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SUMMARY 

A procedure to detect a target in non-Gaussian correlated noise is obtained. Since the bivariate 
probability density is unknown, an approximate one is constructed. The constructed density matches 
the true density in the marginals and first two moments. The mappings required are found for both 
the Weibull and the lognormal clutter distributions. The bivariate density is formed from first map- 
ping an independent Gaussian random variable into Cauchy distributed random variables, correlating 
with summers, and then mapping so that the new bivariate density has the desired marginals and first 
two moments. 

A Neyman-Pearson test was obtained for detecting an additive signal in this bivariate distributed 
noise. Since the test was complicated and contained signals with unknown amplitude and phase, it 
was simplified. The simpler test transforms the correlated Weibull or log-normal measurements back 
to Cauchy distributed, removes the correlation, and finally transforms back to "Gaussian-like distrib- 
uted" variables where the result is compared to a threshold. The performance of this detector was 
compared to that of the matched filter operating on the same data set. It was found that the new 
detector performed better than the matched filter. One could speculate that the best detector always 
transforms the noisy data to that domain where the correlation is best removed and then transforms it 
so that stationary Gaussian random variables are obtained on all examples. 
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Appendix A 
INTEGRATIONS FOR BIVARIATE CAUCHY 

The integrations /Q and I'Q are 

1 OO 00 — 

1 0        0 _ 
/'o =  T\       \      exp[-b[-Wi-W2-{N-l)(wi + W2)]-jwiXi-jw2X2}dwidw2 

{2irf •"-" ■'-°° 

where  the   superscript   r   and   /   have  been  dropped  for  convenience.    By   changing  variables 
iv 'j = — vvj and w'2 = —W2, the two integrations can be combined 

/o+/'o = T f"|°°exp{-M7(wi+W2)) [exp{-;(-^iWi+X2H'2)} + exp{+;(^iWi+X2W2)]]J>Vi(/H'2. 
(27r)     ^    ^ 

This can be simphfied to 

/o + /'o =   J ]Q    e ' COSJCiWi^Wi j^    e ^CO%X2W\dW2 

(27r)^ 

-Nhw. 
e sin jc rjWjflWj J     e sinx2W2aW2. 

These integrals are standard table integrals and consequently 

/o + /'o 
(27r)2 

iNbf-x^X2 

[(Nbf+xf ][iNbf+x^] 

The integrals /j and /'i are     , - 

j        00   0 — 
/, =  [     \      exp { - fo[wi - ^2 + (N - l)(wi + H'2)] -jw^xi -JW2X2] dw2dwi 

(lirf -"o   •'-"'1 

.0       .-w, 
/'   =  f      \       exp[-b[-Wi + W2-{N-l)(wi + W2)]-jWiXi-jw2X2}dw2dwi. 

These can be combined after changing variables to yield 

1        00   0 _ — 
/,+/',=    rf     \      exp{-Nbwi-iN-2)bw2][exp[-jiXiWi+X2W2)} 

+ exp { + ;■ (jc jw 1 + X2W2)} ] dw2dw 1 
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This can be simplified to 

2 
h + I'i = 

(27r)2 
\^   e cos WiJi 

1      +(Af-2)bw2 
cos W'2y2dw2 dw] 

2        f°°     -Nbw,    . 
H r- \     e sin vviy, 

(2^)2 ^0 

After integrating over W2, /i + /'i become 

I +(Af-2)/)H'2       . 
sin w-2y2dw2 dwi. 

/i+/'i = 2   ,   ^2i (27r)^[(iV-2)fe)^+xf] 
(N - 2)& I    e     "'' cos Wi(xi -X2)dwi 

i. '^'   ■       i(xi-X2)<iwi - (A^-2)i> I     e      "''cos WiXi^Wi XT I     e sin w 

+ ^2 j     e smwyXidW] 

After integration over Wj, then 

/,+/', 2[2(N-2)b^-X2(xi-X2)] 

(2irf{[{N - 2)bf+xi mbf + (x, -X2f] 

2[N(N -2)b^-XiX2] 

(27r)^ ([(A^ - 2)b r+xi] [{Nb Y+xf] 

The final integrations for I2 and / '2 are similar and are 

/2 = ——7 j      I       exp{-fe[wi-W2-(A'-l)(H'i+W2)]-;wiXi-7^2X2! dwidw2 
(ZTT) " 

1       f°° f*^ - 
Jo     i-w   exp{ - &[ - Wj + W2 + (A^ - l)(Wi + W2)] -;>ViXi -JH'2X2} (/Wi^flVj. 

''^ =  (2.f 
Combining and changing variables yield 

j       .     r,  ^ f -NbWj 

(27r)^ 

+ (A'-2)6w, , 
e cos WiJiflWi t/vV'! 

+ 
(27r)2 

OC -Nbw,    . 
e sin ^2^2 

(•2     +(Af-2)fcw,    . , 
]     e sin Wi^jflWi dw-,. 

17 



BEN CANTRELL 

In a similar manner to Ii+I\, first one integrates over Wi then H'2 by using standard integration 
tables; the result is 

2[2iN-2)b^-Xi(x2-xO] 
f     4-/'       =:     ^^ — 
'        ^       (lirflKN - 2)bf+xU l(2bf + {x2-xif] 

2[N{N -2)b^-XiX2] 

i2Trf{[iN-2)bY+xf  [(NbY +xi ] 
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Appendix B 
DISTRIBUTION FUNCTIONS 

The distribution function for the magnitude of the Cauchy variables over the in-phase and quad- 
rature components is 

Jo 

4|jCfe 

TT (|x^|^ + 2fc0 V 1 + v: 
-N 

\xk\ ^ 
^2 

L b -j 

d\xk 

Changing variables to 

yields 

e= \x,\^+b^ 

y/uf*"' 1 
f$ = — tan-i 

V \xk 
|2 + fe2 

^+b             ^'^ + b^  ^ L      b      j 

The distribution function for Weibull is 

\        a In 2 i -——   y        exp 
^0                                                                                                          My                                                                                ^ 

In 2 
\yk\ 

a 

and is obtained by first noting 

,   .          r        r,     ,  -^ n,-\        r        r,     ,"^ 

In 2 
\yk\ 
My 

d ln2 
\yk\ 

My 

Then we obtain 

1. 

d\yk 

r .       .   '~\ 

1 — exp ^ — In 2 
\yk 
M„ 

The distribution function for the lognormal is 

.\y,\ 

Jo 27r(J/ I Jk 
exp- 

2ff? 
2 In 

l-^jfe 

M„ ^ ^ I Jt I > 
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which is 

27ra/ 

This is the form of an integral over a Gaussian, which is 

^ -> 

r          r ,     ,  -^   n -7 r        r ,     ,  ■>  n 
1 

2a? 
2 in 

\yk\ 

My 
-d 2 In 

\yk\ 

\- -<< 

T + ^ erf 2      2 
V2 

a/ 
In 

ly* 
M. 

These distribution functions are used to define the mappings g{-) and g   '(•). 
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Appendix C 
IMPORTANCE SAMPLING 

The importance-sampling procedure [C1,C2] is a Monte Carlo technique that distorts the genera- 
tion of the random number so that the events of interest occur more frequently than, but in the same 
manner as, the events occur in nature. The probability of the event occurring is then compensated for 
with a weighting factor so that the true probability of the event is obtained. 

To compute the probability density of the detector, the filter values are quantized by 

X = mAX , 

where 

m 0,... M-1. 

The probability density is computed by 

p{\ is between (m — 1) AX and mAX) = 
A^ 

N 

E 

where A^ is the number of Monte Carlo samples and 6^ = 1 if no importance sampling is used. The 
equation is simply counting the percentage of time the samples fall in the mth interval. For impor- 
tance sampling and this case, the first and last sample of the independent Gaussian variables are dis- 
torted in their standard deviation. The weight factor is computed by ratioing the true density to the 
distorted density evaluated with the distorted data samples.   In this case 

(^d 
exp 

2 
u;(i)] + ii4wr   [z'wr + [4(i)] 

-i 

O'd 
exp 

2 
[zUN + 1)]2 + [zi (N + l)f       [zUN + l)f + [zi (N + 1)]2 

o'd 

where a^ ^^ the distortion_of the standard deviation on the first and last samples. The values Zg{l), 
Zg{l), Zg{N + 1), and z'{N + I) are the sample values under distortion. This distortion decreases the 
correlation in the final data and raises its variance slightly. Consequently more false alarms for the 
same threshold are produced after distortion but the probability is reduced because of 5^. 
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